Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 259(Pt 2): 129276, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38211921

RESUMO

Cardiac failure can be a life-threatening condition that, if left untreated, can have significant consequences. Functional hydrogel has emerged as a promising platform for cardiac tissue engineering. In the proposed study, gelatin methacrylate (GelMA) and alginate, as a primary matrix to maintain cell viability and proliferation, and polypyrrole and carboxyl-graphene, to improve mechanical and electrical properties, are thoroughly evaluated. Initially, a polymer blend of GelMA/Alginate (1:1) was prepared, and then the addition of 2-5 wt% of polypyrrole was evaluated. Next, the effect of incorporating graphene-carboxyl nanosheets (1, 2, and 3 wt%) within the optimized scaffold with 2 wt% polypyrrole was thoroughly studied. The electrical conductivity of the hydrogels was significantly enhanced from 0.0615 ± 0.007 S/cm in GelMA/alginate to 0.124 ± 0.04 S/cm with the addition of 5 wt% polypyrrole. Also, 3 wt% carboxyl graphene improved the electrical conductivity to 0.27 ± 0.09 S/cm. The compressive strength of carboxyl-graphene-containing hydrogel was in the range of 175 to 520 kPa, and tensile strength was 61 and 133 kPa. The simplicity and low-cost fabrication, tunable mechanical properties, optimal electrical conductivity, blood compatibility, and non-cytotoxicity of GelMA/alginate/polypyrrole/graphene biocomposite hydrogel is a promising construct for cardiac tissue engineering.


Assuntos
Grafite , Engenharia Tecidual , Polímeros/química , Gelatina/química , Pirróis , Hidrogéis/farmacologia , Hidrogéis/química , Alginatos/química , Metacrilatos/química , Condutividade Elétrica , Tecidos Suporte/química
2.
Int J Biol Macromol ; 255: 128198, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992930

RESUMO

Multi-layered wound dressings can closely mimic the hierarchical structure of the skin. Herein, a double-layer dressing material is fabricated through electrospinning, comprised of a nanofibrous structure as a healing-support layer or the bottom layer (BL) containing pectin (Pec), soy protein isolate (SPI), pomegranate peel extract (P), and a cellulose (Cel) microfiber layer as a protective/monitoring layer or top layer (TL). The formation of a fine bilayer structure was confirmed using scanning electron microscopy. Cel/Pec-SPI-P dressing showed a 60.05 % weight loss during 7 days of immersion in phosphate buffered solution. The ultimate tensile strength, elastic modulus, and elongation at break for different dressings were within the range of 3.14-3.57 MPa, 32.26-36.58 MPa, and 59.04-63.19 %, respectively. The release of SPI and phenolic compounds from dressings were measured and their antibacterial activity was evaluated. The fabricated dressing was non-cytotoxic following exposure to human keratinocyte cells. The Cel/Pec-SPI-P dressing exhibited excellent cell adhesion and migration as well as angiogenesis. More importantly, in vivo experiments on Cel/Pec-SPI-P dressings showed faster epidermal layer formation, blood vessel generation, collagen deposition, and a faster wound healing rate. Overall, it is anticipated that the Cel/Pec-SPI-P bilayer dressing facilitates wound treatment and can be a promising approach for clinical use.


Assuntos
Nanofibras , Punica granatum , Humanos , Nanofibras/química , Proteínas de Soja/química , Celulose/química , Pectinas/farmacologia , Cicatrização , Antibacterianos/uso terapêutico , Bandagens , Aceleração
3.
Int J Biol Macromol ; 258(Pt 1): 128917, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38134992

RESUMO

Critical sized craniofacial defects are among the most challenging bone defects to repair, due to the anatomical complexity and aesthetic importance. In this study, a polylactic acid/hardystonite-graphene oxide (PLA/HTGO) scaffold was fabricated through 3D printing. In order to upgrade the 3D printed scaffold to a highly porous scaffold, its channels were filled with pectin-quaternized chitosan (Pec-QCs) polyelectrolyte solution containing 0 or 20 mg/mL of simvastatin (Sim) and then freeze-dried. These scaffolds were named FD and FD-Sim, respectively. Also, similar PLA/HTGO scaffolds were prepared and dip coated with Pec-QCs solution containing 0 or 20 mg/mL of Sim and were named DC and DC-Sim, respectively. The formation of macro/microporous structure was confirmed by morphological investigations. The release of Sim from DC-Sim and FD-Sim scaffolds after 28 days was measured as 77.40 ± 5.25 and 86.02 ± 3.63 %, respectively. Cytocompatibility assessments showed that MG-63 cells had the highest proliferation, attachment and spread on the Sim containing scaffolds, especially FD-Sim. In vivo studies on a rat calvarial defect model revealed that an almost complete recovery occurred in the group treated with FD-Sim scaffold after 8 weeks and the defect was filled with newly formed bone. The results of this study acknowledge that the FD-Sim scaffold can be a perfect candidate for calvarial defect repair.


Assuntos
Quitosana , Grafite , Sinvastatina , Ratos , Animais , Tecidos Suporte/química , Polieletrólitos , Regeneração Óssea , Osteogênese , Poliésteres , Impressão Tridimensional , Engenharia Tecidual
4.
ACS Appl Mater Interfaces ; 15(48): 55276-55286, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37990423

RESUMO

To overcome the drawbacks of single-layered wound dressings, bilayer dressings are now introduced as an alternative to achieve effective and long-term treatment. Here, a bilayer dressing composed of electrospun nanofibers in the bottom layer (BL) and a sponge structure as the top layer (TL) is presented. Hydrophilic poly(acrylic acid) (PAAc)-honey (Hny) with interconnected pores of 76.04 µm was prepared as the TL and keratin (Kr), Hny, and vascular endothelial growth factor (VEGF) were prepared as the BL. VEGF indicates a gradual release over 7 days, promoting angiogenesis, as proven by the chick chorioallantoic membrane assay and in vivo tissue histomorphology observation. Additionally, the fabricated dressing material indicated a satisfactory tensile profile, cytocompatibility for human keratinocyte cells, and the ability to promote cell attachment and migration. The in vivo animal model demonstrated that the full-thickness wound healed faster when it was covered with PAAc-Hny/Hny-Kr-VEGF than in other groups. Additionally, faster blood vessel formation, collagen synthetization, and epidermal layer generation were also confirmed, which have proven efficient healing acceleration in wounds treated with synthesized bilayer dressings. Our findings indicated that the fabricated material can be promising as a functional wound dressing.


Assuntos
Mel , Nanofibras , Animais , Humanos , Fator A de Crescimento do Endotélio Vascular/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Queratinas/farmacologia , Cicatrização , Bandagens
5.
Int J Biol Macromol ; 253(Pt 2): 126700, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37673152

RESUMO

In the current study, a core-shell nanofibrous wound dressing based on Pluronic-F127 (F127) containing 2 wt% mupirocin (Mup) core and pectin (Pec)-keratin (Kr) shell was fabricated through coaxial electrospinning technique, and the blended nanofibers were also fabricated from the same materials. The fiber diameter and specific surface area of the blended nanofibers were about 101.56 nm and 20.16 m2/g, while for core-shell nanofibers they were about 97.32 nm and 25.26 m2/g, respectively. The resultant blended and core-shell nanofibers experienced a degradation of 27.65 % and 32.28 % during 7 days, respectively. The drug release profile of core-shell nanofibers revealed a sustained release of Mup over 7 days (87.66 %), while the blended F127-Pec-Kr-Mup nanofibers had a burst release within the first few hours (89.38 % up to 48 h) and a cumulative release of 91.36 % after 7 days. Due to the controlled release of Mup, the core-shell structure significantly improved the human keratinocytes behavior, angiogenic potential and wound healing in a rat model compared to the blended structure. In conclusion, the F127-Mup/Pec-Kr core-shell nanofibrous wound dressing appears to be a promising candidate for the prevention of infection, and can potentially accelerate the recovery and healing of chronic and ischemic wounds.


Assuntos
Mupirocina , Nanofibras , Humanos , Ratos , Animais , Mupirocina/farmacologia , Nanofibras/química , Poloxâmero , Queratinas , Pectinas/farmacologia , Cicatrização , Queratinócitos
6.
Int J Pharm ; 645: 123357, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37647978

RESUMO

A multi-layered scaffold can mimic the hierarchical structure of the skin, accelerate the wound healing, and protect the skin against contamination and infection. In this study, a three-layered (3L) scaffold was manufactured through a combination of 3D printing and electrospinning technique. A top layer of polyurethane (PU) nanofibrous coating for the prevention of micro-organism penetration was created through electrospining. The middle layer was prepared through the 3D printing of Pluronic F127-quaternized chitosan-silver nitrate nanoparticles (F127-QCS-AgNO3), as the porous absorbent and antibacterial layer. A bottom layer of core-shell nanofibrous structure of F127-mupirocin/pectin-keratin (F127-Mup/Pec-Kr) for tissue regeneration and enable antibacterial activity was coated onto the middle layer. A range of techniques were applied to fully characterize the resultant structure. The average tensile strength and elastic modulus of the 3L scaffold were measured as 0.65 ± 0.08 MPa and 9.37 ± 2.33 MPa, respectively. The release of Ag ions, mupirocin (Mup), and the antibacterial activity of the dressings was investigated. According to the results, the highest rate of cell adhesion and viability, and angiogenic potential among the studied samples were related to the 3L scaffold, which was also found to significantly accelerate the wound healing.


Assuntos
Quitosana , Nanofibras , Mupirocina , Tecidos Suporte/química , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Quitosana/química , Impressão Tridimensional , Nanofibras/química
7.
Int J Biol Macromol ; 253(Pt 1): 126510, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37625748

RESUMO

3D printing fabrication has become a dominant approach for the creation of tissue engineering constructs as it is accurate, fast, reproducible and can produce patient-specific templates. In this study, 3D printing is applied to create nanocomposite scaffold of polylactic acid (PLA)/hardystonite (HT)-graphene oxide (GO). GO is utilized as a coupling agent of alkaline treated HT nanoparticles within PLA matrix. The addition of HT-GO nanoparticles of up to 30 wt% to PLA matrix was found to increase the degradability from 7.33 ± 0.66 to 16.03 ± 1.47 % during 28 days. Also, the addition of 20 wt% of HT-GO nanoparticles to PLA scaffold (PLA/20HTGO sample) significantly increased the compressive strength (from 7.65 ± 0.86 to 14.66 ± 1.01 MPa) and elastic modulus (from 94.46 ± 18.03 to 189.15 ± 10.87 MPa). The apatite formation on the surface of nanocomposite scaffolds in simulated body fluid within 28 days confirmed the excellent bioactivity of nanocomposite scaffolds. The MG63 cell adhesion and proliferation and, also, the rat bone marrow mesenchymal stem cells osteogenic differentiation were highly stimulated on the PLA/20HTGO scaffold. According to the sum of results obtained in the current study, the optimized PLA/20HTGO nanocomposite scaffold is highly promising for hard tissue engineering applications.


Assuntos
Nanocompostos , Tecidos Suporte , Humanos , Ratos , Animais , Osteogênese , Engenharia Tecidual/métodos , Regeneração Óssea , Poliésteres , Impressão Tridimensional
8.
J Therm Spray Technol ; 32(4): 959-969, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521527

RESUMO

Copper and its alloys are known as antimicrobial agents that can be used in public places; however, pure copper has a low wear resistance and tends to lose its gloss relatively fast and stainless steel is still more desirable because of its mechanical properties and stable appearance. In this research, German silver coatings, a copper-nickel alloy, are studied as a superior alternative for pure copper coatings. German silver coating on mild steel substrates and stainless steel with two different surface roughnesses was prepared and placed into water bath up to 6 months to investigate the corrosion and exposure effects on the antibacterial behavior. A range of techniques was used to study the microstructure, surface morphology and mechanical properties such as microhardness, coating bonding adhesion, surface roughness and wettability of the coating. Colony count method was used to measure the antibacterial properties, and samples were tested against influenza A virus to evaluate the virucidal activity. The coating thickness was around 130 µm and contained 15% pores and oxides with splats forming inside the coating structure. Inside each splat, columnar grains could be seen with an average of 700 nm width and 4 µm length. The bonding strength of the coating was about 15 MPa, the hardness of coatings was about 180 HV, and the average surface roughness of the as-sprayed samples was about 10 µm. German silver coatings can destroy both Staphylococcus aureus and Escherichia coli by more than 90% after 6 h of exposure time, and it also has a high-level of virucidal activity against influenza A virus after 2 h exposure time. Antibacterial behavior did not show any significant changes after 6 months of immersing samples in water bath. Thus, thermally sprayed German silver coatings exhibited silvery color for a long period of time, while its antimicrobial efficiency was comparable to pure copper coatings. Supplementary Information: The online version contains supplementary material available at 10.1007/s11666-022-01528-4.

9.
Carbohydr Polym ; 312: 120787, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37059527

RESUMO

Three-dimensional (3D) printing technology has become an advanced approach for fabricating patient-specific scaffolds with complex geometric shapes to replace damaged or diseased tissue. Herein, polylactic acid (PLA)-Baghdadite (Bgh) scaffold were made through the fused deposition modeling (FDM) 3D printing method and subjected to alkaline treatment. Following fabrication, the scaffolds were coated with either chitosan (Cs)-vascular endothelial growth factor (VEGF) or lyophilized Cs-VEGF known as PLA-Bgh/Cs-VEGF and PLA-Bgh/L.(Cs-VEGF), respectively. Based on the results, it was found that the coated scaffolds had higher porosity, compressive strength and elastic modulus than PLA and PLA-Bgh samples. Also, the osteogenic differentiation potential of scaffolds following culture with rat bone marrow-derived mesenchymal stem cells (rMSCs) was evaluated through crystal violet and Alizarin-red staining, alkaline phosphatase (ALP) activity and calcium content assays, osteocalcin measurements, and gene expression analysis. The release of VEGF from the coated scaffolds was assessed and also the angiogenic potential of scaffolds was evaluated. The sum of results presented in the current study strongly suggests that the PLA-Bgh/L.(Cs-VEGF) scaffold can be a proper candidate for bone healing applications.


Assuntos
Quitosana , Nanocompostos , Ratos , Animais , Osteogênese , Tecidos Suporte/química , Fator A de Crescimento do Endotélio Vascular/genética , Regeneração Óssea , Poliésteres/química , Impressão Tridimensional , Engenharia Tecidual/métodos , Porosidade
10.
Int J Pharm ; 636: 122825, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36921740

RESUMO

In current study, a new remotely controlled drug delivery, radio-sensitizing, and photothermal therapy agent based on thioglycolic acid modified bismuth nanosheets is thoroughly evaluated. Bismuth nanosheets were synthesized using sodium borohydride (NaBH4) and Tween 20 through low energy (400 W) sonication within 2 h. The resultant nanosheets were 40-60 nm in size and 1-3 atomic layers in thickness. The morphological and structural characteristics of the nanosheets were studied using transmission electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy and ultraviolet spectroscopy. The surface of the nanosheets was modified using thioglycolic acid, which resulted in enhanced Mitomycin C loading capacity to 274.35% and circumvented the burst drug release due to the improved electrostatic interactions. At pH 7.4 and 5.0, the drug release was significantly boosted from 45.1 to 69.8%, respectively. Thioglycolic acid modified bismuth nanosheets under 1064 nm laser irradiation possessed photothermal conversion efficiency of η=51.4% enabling a temperature rise of 24.9 °C at 100 µg/ml in 5 min. The combination of drug delivery, photothermal therapy, and radio-sensitization greatly damaged the MDA-MB-231 cells through apoptosis and diminished their colony forming.


Assuntos
Hipertermia Induzida , Neoplasias de Mama Triplo Negativas , Humanos , Doxorrubicina , Mitomicina , Boroidretos , Fototerapia/métodos , Bismuto , Sódio , Hipertermia Induzida/métodos
11.
J Mech Behav Biomed Mater ; 138: 105655, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621086

RESUMO

Polylactic acid (PLA) is considered as a great option to be employed as 3D porous scaffold in hard tissue engineering applications owing to its excellent biocompatibility and processability. However, relatively weak mechanical properties and inappropriate biodegradability limit its extensive usage. In order to overcome the mentioned challenges, micrometric magnesium particles were incorporated into the PLA matrix by the fused deposition modeling (FDM) technique. The effects of various Mg contents (i.e., 2, 4, 6, 8 and 10 wt%) on the structural, thermal, rheological, mechanical, wettability, degradability characteristics and cellular behavior of the 3D porous PLA-Mg composite scaffolds were examined. The developed PLA-Mg composites exhibit an interconnected porous structure with a mostly uniform distribution of Mg particles in the PLA matrix. It was found that incorporation of Mg particles into the PLA matrix enhances the mechanical, physical, chemical and biological characteristics of PLA. The cell studies demonstrate that the PLA-6Mg composite scaffold provides the best cellular response in terms of cell atachment and viability. The obtained results in this investigation greatly suggest that the 3D-printed PLA-Mg composite scaffold is a promising candidate for hard tissue engineering applications.


Assuntos
Engenharia Tecidual , Tecidos Suporte , Engenharia Tecidual/métodos , Tecidos Suporte/química , Impressão Tridimensional , Poliésteres/química
12.
Int J Biol Macromol ; 222(Pt A): 1605-1618, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36116591

RESUMO

Advanced platelet-rich fibrin (A-PRF) provides long-term release of growth factors that potentially accelerate wound healing. In this study, core-shell nanofibrous structure of polyvinyl alcohol (PVA) core and gelatin (Gel) shell containing A-PRF is fabricated through coaxial electrospinning method. PVA/(Gel/A-PRF) core-shell nanofibers had the highest porosity, specific surface area and hydrophilicity among all the studied nanofibers. PVA/(Gel/A-PRF) core-shell nanofibers with a tensile stress of 7.43 ± 0.38 MPa and an elastic modulus of 102.05 ± 9.36 MPa had higher mechanical properties than PVA/Gel/A-PRF and PVA/Gel blend nanofibers. PVA/(Gel/A-PRF) nanofibers had a 47.41 ± 1.97 % degradability over 7 days of immersion in PBS. The release of VEGF and PDGF-AB growth factors from PVA/(Gel/A-PRF) core-shell nanofibers and PVA/Gel/A-PRF blend nanofibers were evaluated. It was shown that L929 cell proliferation and adhesion on PVA/(Gel/A-PRF) core-shell nanofibers were significantly higher than other samples. Also, chicken chorioallantoic membrane (CAM) assay revealed that the highest angiogenic potential among the studied samples related to PVA/(Gel/A-PRF) sample. In vivo studies on a rat model showed wound closure for PVA/(Gel/A-PRF) group was 97.83 ± 2.03 % after 11 days. Histopathological and immunohistochemical examinations approved the acceleration of wound healing by PVA/(Gel/A-PRF) core-shell nanofiber dressing. The results strongly recommend the use of PVA/(Gel/A-PRF) core-shell nanofiber dressing for the repair of full-thickness wounds.


Assuntos
Nanofibras , Fibrina Rica em Plaquetas , Ratos , Animais , Nanofibras/química , Cicatrização , Bandagens , Álcool de Polivinil/química , Gelatina/química , Fibrina
13.
Biomater Adv ; 141: 213082, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36067641

RESUMO

Platelet-rich fibrin (PRF) is extracted from the blood without biochemical interference and, also, with the ability of a long-term release of growth factors that can stimulate tissue repair and regerenation. Here, leucocyte- and platelet-rich fibrin (L-PRF) and advanced platelet-rich fibrin (A-PRF) were extracted and utilized for the creation of nanofibers containing polyacrylamide (PAAm), PAAm / L-PRF and PAAm / A-PRP through electrospinning processing technique. The effect of the type of PRF on the physical, mechanical and biological properties of the resultant nanofiberous wound dressings are thoroughly evaluated. The results presented in the current study reveals that the fiber diameter is grealtly reduced through the utilization of L-PRF. In addition, mechanical property is also positively affected by L-PRF and the degradation rate is found to be higher compared to A-PRF group. The L929 cells proliferation and adhesion, angiogenesis potential and wound healing ability was significantly higher in PAAm/A-PRF nanofibers compared to pure PAAm and PAAm/L-PRF nanofibers owed to the release of vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF). Overall, the utilization of L-PRF or A-PRF can improve the physical, mechanical and biological behavior of nanofiber making them an ideal candidate for wound dressings, with the emphasis on the skin tissue repair and regeneration applications.


Assuntos
Nanofibras , Fibrina Rica em Plaquetas , Resinas Acrílicas , Bandagens , Fator de Crescimento Derivado de Plaquetas/metabolismo , Fibrina Rica em Plaquetas/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo
14.
Prog Biophys Mol Biol ; 175: 14-30, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36029849

RESUMO

Radiation therapy (RT) is a method commonly used for cancer treatment worldwide. Commonly, RT utilizes two routes for combating cancers: 1) high-energy radiation to generate toxic reactive oxygen species (ROS) (through the dissociation of water molecules) for damaging the deoxyribonucleic acid (DNA) inside the nucleus 2) direct degradation of the DNA. However, cancer cells have mechanisms to survive under intense RT, which can considerably decrease its therapeutic efficacy. Excessive radiation energy damages healthy tissues, and hence, low doses are applied for cancer treatment. Additionally, different radiosensitizers were used to sensitize cancer cells towards RT through individual mechanisms. Following this route, nanoparticle-based radiosensitizers (herein called nanoradiosensitizers) have recently gained attention owing to their ability to produce massive electrons which leads to the production of a huge amount of ROS. The success of the nanoradiosensitizer effect is closely correlated to its interaction with cells and its localization within the cells. In other words, tumor treatment is affected from the chain of events which is started from cell-nanoparticle interaction followed by the nanoparticles direction and homing inside the cell. Therefore, passive or active targeting of the nanoradiosensitizers in the subcellular level and the cell-nano interaction would determine the efficacy of the radiation therapy. The importance of the nanoradiosensitizer's targeting is increased while the organelles beyond nucleus are recently recognized as the mediators of the cancer cell death or resistance under RT. In this review, the principals of cell-nanomaterial interactions and which dominate nanoradiosensitizer efficiency in cancer therapy, are thoroughly discussed.


Assuntos
Nanopartículas , Neoplasias , Radiossensibilizantes , Humanos , Espécies Reativas de Oxigênio/metabolismo , Radiossensibilizantes/farmacologia , Radiossensibilizantes/uso terapêutico , Neoplasias/radioterapia , Neoplasias/tratamento farmacológico , DNA
15.
Carbohydr Polym ; 292: 119648, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35725158

RESUMO

To better mimic the structure of skin tissue, the use of a multi-layered wound dressing has been proposed. In the present study, a sponge-nanofibrous bi-layer dressing is designed. For this purpose, a chitosan/polyethylene glycol (CsPEG) sponge with advanced platelet-rich fibrin (A-PRF) was prepared as the upper layer of wound dressing, and a Cs/L-arginine electrospun nanofiber layer as the bottom layer. After physical, chemical and mechanical evaluations, the release of platelet-derived growth factor-AB (PDGF-AB), vascular endothelial growth factor (VEGF) and L-arginine were investigated. The antibacterial activity, cell viability and attachment of Bi-layer1.5 dressing (CsPEG/1.5A-PRF sponge coated with Cs/0.5 L-arginine nanofibers) were significantly higher than other dressings. Also, Bi-layer1.5 dressing increased the angiogenic potential and accelerated the wound healing, compared to other samples. Given the promising obtained results, the use of Bi-layer1.5 wound dressing with the ability to release growth factors and L-arginine is highly recommended to treat full-thickness wounds.


Assuntos
Quitosana , Nanofibras , Fibrina Rica em Plaquetas , Antibacterianos/farmacologia , Arginina , Bandagens , Biomimética , Quitosana/química , Nanofibras/química , Fator A de Crescimento do Endotélio Vascular
16.
Biomater Adv ; 134: 112541, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35525762

RESUMO

Recently, nanofibrous structures have shown great potential for a wide range of medical applications. The aim of the current study was to evaluate the wound healing process using Polycaprolactone/Keratin/Platelet-rich fibrin (PCL/Kr/PRF) fibrous scaffold fabricated through electrospinning process. A range of techniques were utilized to fully characterize the chemical, physical and biological properties of the resultant structure. Results revealed that by the addition of only 0.5%w/v PRF to PCL/Kr (PCL/Kr/0.5PRF) sample, the fibers diameter decreased from 193.93 ± 64.80 nm to 65.98 ± 14.03 nm, and the stress at break demonstrated a 18.27% increase in comparison to the PCL sample (from 2.90 ± 0.80 MPa to 3.43 ± 0.90 MPa). The PCL/Kr/0.5PRF scaffold showed more antibacterial activity against gram-positive and gram-negative bacteria than PCL/Kr sample. Based on enzyme-linked immunosorbent assays, the PCL/Kr/0.5PRF sample revealed an independent release of VEGF and PDGF for 7 days. Cell viability studies demonstrated non-cytotoxic nature of PRF-containing dressings. Also, chorioallantoic membrane (CAM) assay was performed to evaluate the angiogenic potential of the wound dressings. The in vivo assessments also showed that PCL/Kr/0.5PRF accelerated the wound healing process in terms of collagen deposition and the formation of skin appendages which was comparable to the normal skin. Overall, the data presented in this study greatly suggest that the PCL/Kr/0.5PRF wound dressing could be a suitable candidate for wound healing and skin regeneration.


Assuntos
Nanofibras , Fibrina Rica em Plaquetas , Antibacterianos/química , Bandagens , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Nanofibras/química , Cicatrização
17.
Macromol Biosci ; 22(7): e2200014, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35421269

RESUMO

A wound can be surgical cuts from an operation or due to accident and trauma. The infected wound, as a result of bacteria growth within the damaged skin, interrupts the natural wound healing process and significantly impacts the quality of life. Wound dressing is an important segment of the skincare industry with its economic burden estimated at $ 20.4 billion (in 2021) in the global market. The results of recent clinical trials suggest that the use of modern dressings can be the easiest, most accessible, and most cost-effective way to treat chronic wounds and, hence, holds significant promise. With the sheer number of dressings in the market, the selection of correct dressing is confusing for clinicians and healthcare workers. The aim of this research is to review widely used types of antibacterial wound dressings, as well as emerging products, for their efficiency and mode of action. In this review, introducing antibiotics and antibacterial nanoparticles as two important and clinically widely used categories of antibacterial agents is focused. The perspectives and challenges for paving the way for future research in this field are also discussed.


Assuntos
Bandagens , Qualidade de Vida , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Humanos , Infecção da Ferida Cirúrgica , Cicatrização
18.
Int Wound J ; 19(7): 1934-1954, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35297170

RESUMO

Wound healing is a complex process in tissue regeneration through which the body responds to the dissipated cells as a result of any kind of severe injury. Diabetic and non-healing wounds are considered an unmet clinical need. Currently, different strategic approaches are widely used in the treatment of acute and chronic wounds which include, but are not limited to, tissue transplantation, cell therapy and wound dressings, and the use of an instrument. A large number of literatures have been published on this topic; however, the most effective clinical treatment remains a challenge. The wound dressing involves the use of a scaffold, usually using biomaterials for the delivery of medication, autologous stem cells, or growth factors from the blood. Antibacterial and anti-inflammatory drugs are also used to stop the infection as well as accelerate wound healing. With an increase in the ageing population leading to diabetes and associated cutaneous wounds, there is a great need to improve the current treatment strategies. This research critically reviews the current advancement in the therapeutic and clinical approaches for wound healing and tissue regeneration. The results of recent clinical trials suggest that the use of modern dressings and skin substitutes is the easiest, most accessible, and most cost-effective way to treat chronic wounds with advances in materials science such as graphene as 3D scaffold and biomolecules hold significant promise. The annual market value for successful wound treatment exceeds over $50 billion US dollars, and this will encourage industries as well as academics to investigate the application of emerging smart materials for modern dressings and skin substitutes for wound therapy.


Assuntos
Bandagens , Pele Artificial , Humanos , Cicatrização , Materiais Biocompatíveis , Peptídeos e Proteínas de Sinalização Intercelular
19.
Int J Biol Macromol ; 204: 245-257, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35131230

RESUMO

Despite significant advances in surgery and postoperative care, there are still challenges in the treatment of wounds. In the current study, a freeze-dried chitosan (Cs)/polyvinylpyrrolidone (PVP) sponges containing platelet-rich fibrin (PRF at 1, 1.5 and 2% w/v) for wound dressing application is fabricated and fully characterized. Addition of 1% w/v of PRF to Cs/PVP (CS/PVP/1PRF) sample significantly increased the tensile strength (from 0.147 ± 0.005 to 0.242 ± 0.001 MPa), elastic modulus (from 0.414 ± 0.014 to 0.611 ± 0.022 MPa) and strain at break (from 53.4 ± 0.9 to 61.83 ± 1.17%) compared to Cs sample, and was hence selected as the optimal sample. The antibacterial activity of Cs/PVP/1PRF sponge wound dressing against E. coli and S. aureus was confirmed to be effective. Enzyme-linked immunosorbent assays revealed that the release of both VEGF and PDGF-AB from PRF powder, as well as PDGF-AB from Cs/PVP/1PRF sample was time-independent, but the release of VEGF from Cs/PVP/1PRF sample increased significantly with time. According to MTT and CAM assays, the Cs/PVP/1PRF sample significantly increased proliferation and angiogenic potential, respectively. Furthermore, in vivo studies demonstrated a 97.16 ± 1.55% wound closure for Cs/PVP/1PRF group after 14 days.


Assuntos
Quitosana , Fibrina Rica em Plaquetas , Bandagens , Quitosana/farmacologia , Escherichia coli , Povidona , Staphylococcus aureus , Cicatrização
20.
ACS Biomater Sci Eng ; 7(9): 4591-4601, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34461017

RESUMO

Electroconductive scaffolds can be a promising approach to repair conductive tissues when natural healing fails. Recently, nerve tissue engineering constructs have been widely investigated due to the challenges in creating a structure with optimized physiochemical and mechanical properties close to the native tissue. The goal of the current study was to fabricate graphene-containing polycaprolactone/gelatin/polypyrrole (PCL/gelatin/PPy) and polycaprolactone/polyglycerol-sebacate/polypyrrole (PCL/PGS/PPy) with intrinsic electrical properties through an electrospinning process. The effect of graphene on the properties of PCL/gelatin/PPy and PCL/PGS/PPy were investigated. Results demonstrated that graphene incorporation remarkably modulated the physical and mechanical properties of the scaffolds such that the electrical conductivity increased from 0.1 to 3.9 ± 0.3 S m-1 (from 0 to 3 wt % graphene) and toughness was found to be 76 MPa (PCL/gelatin/PPy 3 wt % graphene) and 143.4 MPa (PCL/PGS/PPy 3 wt % graphene). Also, the elastic moduli of the scaffolds with 0, 1, and 2 wt % graphene were reported as 210, 300, and 340 kPa in the PCL/gelatin/PPy system and 72, 85, and 92 kPa for the PCL/PGS/PPy system. A cell viability study demonstrated the noncytotoxic nature of the resultant scaffolds. The sum of the results presented in this study suggests that both PCL/gelatin/PPy/graphene and PCL/PGS/PPy/graphene compositions could be promising biomaterials for a range of conductive tissue replacement or regeneration applications.


Assuntos
Grafite , Nanocompostos , Tecido Nervoso , Polímeros , Pirróis , Tecidos Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...